

GENERAL BENEFITS

- HEAT PUMP READY
- SUPPORT HEATING WITH SOLAR
- HEART OF THE SYSTEM

Qube X

Unpressurized hot water storage tank and drain back reservoir

Solarico

Qube X

Unpressurized hot water storage tank and drain back reservoir

APPLICATION

- Renovations of hot water systems
- Large hot water outputs
- Clean hot water in clean spaces
- Where the budget is limited
- Energy efficient installations
- Harshest environment

BENEFITS

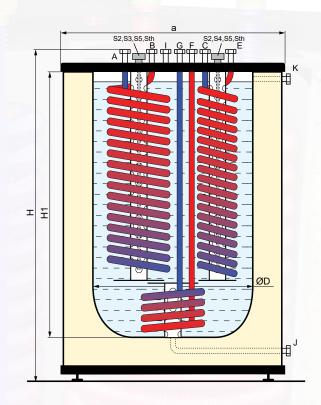
- Lightweight
- Easy to manipulate
- Installer friendly
- Lower transport costs
- Optional electric heater backup (1 or 2)

HOW IT WORKS

There is polyethylene tank inside filled with energy transfer medium and up to 3 heat exchangers:

- one heat exchanger is used for providing hygienic hot water
- other 2 heat exchangers may be used for connecting:
 - 2 heat sources, or
 - 1 heat source + 1 heat consumer
- the tank is not pressurized
- the tank may be used as solar drain back tank
- the inside medium may be used as a solar drain back medium
- the inside medium transfers the energy among the heat exchangers and solar collectors

HYGIENIC ON-DEMAND DOMESTIC HOT WATER


- 10÷30% energy savings due to on-demand principle of heating of water for domestic use. It uses energy to heat up the water only when the user opens the tap
- Improved Legionella prevention through the use of continuous flow principle
- Application in the HORECA industry, kindergartens, schools, hospitals, and residential areas

WATER MEDIUM FOR HEAT TRANSFER INSTEAD OF GLYCOL

- Water has superior heat transfer properties compared to propylene or ethylene glycol because of a high thermal capacity and low viscosity.
- Unlimited Application anywhere, including installations where contamination potential is not allowed
- Highest Solar Thermal Efficiency Water has higher thermal conductivity compared to glycol
- Minimum Maintenance No need for concentration check up and potential glycol based corrosion
- Low Cost Glycol solutions are more expensive than water, plus necessary equipment for its handling and maintenance

Qube X		220		400
D (diameter)	(mm)	620		890
H1 (height)	(mm)	845		845
H (height)	(mm)	1100		1100
a (width)	(mm)	725		960
Pivot measurement	(mm)	1320		1460
Gross tank capacity	(I)	220		400
Weight (with exchangers)	(kg)	80		100
Connections I,J			5/4"	
S2 Solar sensor position	(mm)		450	
S3 DHW sensor position	(mm)	250		
S4 Heating sensor position	(mm)	250		
S5 Overheating protection position	(mm)	250		
Max. working temperature	(°C)	90		
Nominal flow rate (all exchangers)	(l/min)	20		
Max. flow rate (all exchangers)	(l/min)		30	
Max. working pressure (all exchangers)	(bar)	Selection and the second	10	
Max. test pressure (all exchangers)	(bar)		15	
Solar heat exchanger				
Connections F, G	16666		5/4"	
Capacity	(1)	8,68		8,68
Output area	(m²)	2,67		2,67
DHW heat exchanger				
Connections A, B		***************	5/4"	i Telefolololololololol
Capacity	(1)	17,55		23,25
Output area	(m²)	5,35		7,07
Heating exchanger				
Connections C, E		Managara (5/4"	
Capacity	(1)	6,78		9,31
Output area	(m²)	2,10		2,87

A - Cold water in

F - Solar in

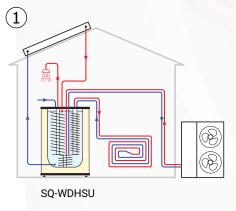
B - Hot water out C - Heating in G - Solar out

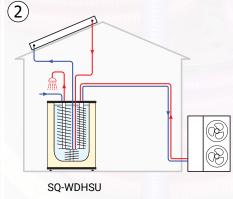
E - Heating out

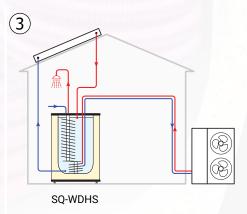
I - Solar Drain Back in

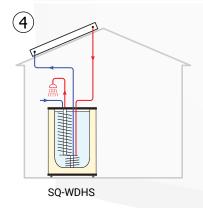
J - Solar Drain Back out

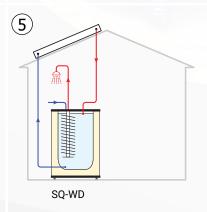
K - Overflow pipe


S2 - Solar sensor


S3 - DHW sensor


S4 - Heating sensor


S5 - Overheating protection sensor


Sth - Electrical thermostat

- Hygienic Hot Water + Solar Drain Back
 + Heat Pump + Solar support for space
 heating
- Hygienic Hot Water + Solar Pressurized + Heat Pump
- 3. Hygienic Hot Water + Solar Drain Back + Heat Pump
- 4. Hygienic Hot Water + Solar Pressurized
- 5. Hygienic Hot Water + Solar Drain Back

- Solar Thermal Collectors
- Multi-Functional Storage Tanks and Hygienic Water Heaters
- Drain Back Reservoirs
- Expansions Vessels
- Pressure Vessels
- Heat Exchangers

PRODUCTION FACILITY:

• Euroterm d.o.o. Lece Koteski 50 Industrial area Biljana 7500 Prilep R. North Macedonia

☑ info@solarico.eu

www.solarico.eu +389 75 463 929

\(+389 48 419 415

+389 48 422 981